skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rieger, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kernel methods for solving partial differential equations work coordinate-free on the surface and yield high approximation rates for smooth solutions. Localized Lagrange bases have proven to alleviate the computational complexity of usual kernel methods for data fitting problems, but the efficient numerical solution of the ill-conditioned linear systems of equations arising from kernel- based Galerkin solutions to PDEs is a challenging problem which has not been addressed in the literature so far. In this article we apply the framework of the geometric multigrid method with a τ ≥ 2-cycle to scattered, quasi-uniform point clouds on the surface. We show that the resulting solver can be accelerated by using the Lagrange function decay and obtain satisfying convergence rates by a rigorous analysis. In particular, we show that the computational cost of the linear solver scales log-linear in the degrees of freedom. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026